Section: Dissemination
Teaching - Supervision - Juries
Teaching
-
Master: E. Kaufmann, Spring 2018, Data Mining, M1 Maths/Finances, Université de Lille (36 hours)
-
Master: E. Kaufmann, Spring 2018, Machine Learning, M2 Maths/Finances, Université de Lille (18 hours)
-
Master: M. Valko, 2018/2019: Graphs in Machine Learning, 36h eqTD, M2, ENS Cachan
-
Master: O. Maillard, Spring 2018: Sequential Learning course, parcours DAD, 30h eqTD, Ecole Centrale Lille.
-
Master: O. Maillard, January 2018: Sequential Learning tutorial, Technicolor, 6h eqTD, Rennes
Supervision
-
PhD completion: Merwan Barlier, Human-in-the loop reinforcement learning for dialogue systems, started Oct. 2014, advisor: Olivier Pietquin
-
PhD completion: Alexandre Bérard, Deep learning for post-editing and automatic translation, started Oct. 2014, advisor: Olivier Pietquin
-
PhD in progress: Lilian Besson, Bandit approach to improve Internet Of Things Communications, started Oct. 2016, advisor: Émilie Kaufmann, Christophe Moy (CentraleSupélec Rennes)
-
PhD in progress: Ronan Fruit, Exploration-exploitation in hierarchical reinforcement learning, Inria, started Dec. 2015, advisor: Daniil Ryabko, Alessandro Lazaric
-
PhD in progress: Guillaume Gautier, DPPs in ML, started Oct. 2016, advisor: Michal Valko; Rémi Bardenet
-
PhD in progress: Jean-Bastien Grill, Création et analyse d'algorithmes efficaces pour la prise de décision dans un environnement inconnu et incertain, Inria/ENS Paris/Lille 1, started Oct. 2014, advisor: Rémi Munos, Michal Valko
-
PhD in progress: Édouard Leurent, Autonomous vehicle control: application of machine learning to contextualized path planning, started Oct. 2017, advisor: Odalric Maillard, Philippe Preux, Denis Effimov (NON-A), Wilfrid Perruquetti (NON-A)
-
PhD aborted: Sheikh Waqas Akhtar, Bandits for non-stationarity and structure, started Oct. 2017, advisor: Odalric Maillard, Daniil Ryabko.
-
PhD in progress: Pierre Perrault, Online Learning on Streaming Graphs, started Sep. 2017, advisor: Michal Valko; Vianney Perchet
-
PhD in progress: Mathieu Seurin, Multi-scale rewards in reinforcement learning, started Oct. 2017, advisor: Olivier Pietquin, Philippe Preux
-
PhD in progress: Julien Seznec, Sequential Learning for Educational Systems, started Mar. 2017, advisor: Michal Valko; Alessandro Lazaric, Jonathan Banon
-
PhD in progress: Xuedong Shang, Adaptive methods for optimization in stochastic environments, started Oct. 2017, advisor: Émilie Kaufmann, Michal Valko
-
PhD in progress: Florian Strub, Reinforcement Learning for visually grounded interaction, started Jan. 2016, advisors: Olivier Pietquin and Jeremie Mary
-
PhD in progress: Kiewan Villatel, Deep Learning for Conversion Rate Prediction in Online Advertising, started Oct. 2017, advisor: Philippe Preux
-
PhD in progress: Hassan Saber, start Oct. 2018, Structured Multi-armed bandits, advisor: Odalric Maillard, Philippe Preux.
-
PhD in progress: Omar Darwiche, start Oct. 2018, Sequential Learning in Dynamic Environments, advisor: Émilie Kaufmann, Michal Valko
Juries
PhD and HDR juries:
-
-
Pierre Ménard, Université Toulouse 3 Paul Sabatier, June 2018, Sur la notion d'optimalité dans les problèmes de bandits stochastiques. Reviewer
-
Mariana Vargas Vieyra, Université Lille, September 2017, Adaptive graph learning with application to natural language processing. Ph.D. mid-term evaluation reviewer
-